
EVStore: Storage and Caching Capabilities for Scaling
Embedding Tables in Deep Recommendation Systems

Daniar H. Kurniawan
University of Chicago
Chicago, IL, USA

daniar@uchicago.edu

Ruipu Wang
Beijing University of Technology

Beijing, China
rexwoodrp@gmail.com

Kahfi S. Zulkifli
Fandi A. Wiranata

Bandung Institute of Technology
Bandung, Jawa Barat, Indonesia
{sbhnkahfi,fandi.z.w}@gmail.com

John Bent
Seagate Technology
Fremont, CA, USA

john.bent@seagate.com

Ymir Vigfusson
Emory University
Atlanta, GA, USA

ymir@mathcs.emory.edu

Haryadi S. Gunawi
University of Chicago

Chicago, IL, USA
haryadi@cs.uchicago.edu

ABSTRACT

Modern recommendation systems, primarily driven by deep-

learning models, depend on fast model inferences to be useful. To

tackle the sparsity in the input space, particularly for categorical

variables, such inferences are made by storing increasingly large

embedding vector (EV) tables in memory. A core challenge is that

the inference operation has an all-or-nothing property: each infer-

ence requires multiple EV table lookups, but if any memory access

is slow, the whole inference request is slow. In our paper, we de-

sign, implement and evaluate EVStore, a 3-layer EV table lookup

system that harnesses both structural regularity in inference oper-

ations and domain-specific approximations to provide optimized

caching, yielding up to 23% and 27% reduction on the average and

p90 latency while quadrupling throughput at 0.2% loss in accuracy.

Finally, we show that at a minor cost of accuracy, EVStore can re-

duce the Deep Recommendation System (DRS) memory usage by

up to 94%, yielding potentially enormous savings for these costly,

pervasive systems.

CCS CONCEPTS

• Information systems→Novelty in information retrieval; •

Computer systems organization→ n-tier architectures; Sec-

ondary storage organization; Pipeline computing; Real-time

system architecture; • Computing methodologies→ Neural net-

works.

KEYWORDS

Recommendation Systems; Deep learning; Caching systems; Infer-

ence systems; Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575718

ACM Reference Format:

Daniar H. Kurniawan, Ruipu Wang, Kahfi S. Zulkifli, Fandi A. Wiranata,

John Bent, Ymir Vigfusson, and Haryadi S. Gunawi. 2023. EVStore: Stor-

age and Caching Capabilities for Scaling Embedding Tables in Deep Rec-

ommendation Systems. In Proceedings of the 28th ACM International Con-

ference on Architectural Support for Programming Languages and Operat-

ing Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC,

Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3575693.3575718

1 INTRODUCTION

Recommendation systems are used prominently across modern on-

line services to help people make decisions. They capture user be-

havior and preferences to display personalized advertisements [29,

30], rank news [10, 24], and recommend products [69]. The impact

of recommendation systems on user engagement is tremendous.

Recent studies show that a significant amount of content—30% of

all traffic on Amazon’s website, 60% of the videos on YouTube, and

75% of the viewed movies on Netflix came from suggestions made

by recommendation algorithms [7, 8, 62, 74].

In the age of Deep Learning, Deep Recommendation Systems

(DRSs) are widely used to deliver high-quality recommendations

[30, 78], but tackling categorical (“sparse”) input features is their

Achilles’ heel. Modern DRSs, such as Facebook’s post recommen-

dation systems [30], often contain hundreds or thousands of cat-

egorical features (e.g., users, posts, or pages), each of which can

contain millions or even tens of billions of possible categories. To

make the complexity of the deep neural network (DNN) tractable,

sparse categorical data is usually converted to (“dense”) vectors of

numbers before being fed to the model. The most popular conver-

sion is via embedding vector tables, or “EV tables” for short (§2).

By reducing the DNN complexity, EV tables sacrifice space for

faster computation, and thus require significant memory. Conse-

quently, the space management of EV tables becomes challenging:

many real-world EV tables contain billions of embedding vectors

[31, 69] that require tens of TBs of memory capacity. Such DRAM-

heavy architectures account for significant operational costs for

DRS users measured in millions of dollars—nearly 80% of all AI-

related deployment in Facebook’s data centers in 2020 directly sup-

ported DRSs [30]. Additionally, industry’s insatiable appetite for

improved recommendation accuracy is driving the rapid growth of

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

EV tables in DRS. As users become more reliant on these systems,

they expect higher quality recommendations that are tailored to

their individual preferences. To meet this demand, recommenda-

tion systems must be able to encode richer semantic relationships,

which requires larger EV tables. This has led to a tripling of EV

table sizes every two years (1.5× annual growth) [16, 38].

Unfortunately, the state-of-the-art DRSs are simply not

equipped to handle the exponential growth of EV table sizes. Open-

source DRSs platforms like Facebook’s DLRM [54] and Google’s

DCN [70, 71], for example, store the full EV tables in DRAM and

lack support for responding to lookups frombackend storagewhen

memory is exhausted. This brings several downsides. When the

entire memory is mostly occupied by EV tables of a specific DRS

model, the server is not able to run other DRSs concurrently, po-

tentially reducing resource utilization of the server and the overall

throughput of the recommendation service. Furthermore, storing

the entire EV tables in memory is costly as the price of DRAM

keeps increasing, especially due to shortages in global supply [13].

A natural solution to this problem is by moving the large EV tables

to the backend storage (SSDs or HDDs). There are recent publica-

tions in this space that focus on optimizing the backend storage

for EV table lookups but not that many [28, 68, 72]. While exist-

ing storage solutions advance the state of the art, their adoption is

limited due to the need of customized devices (e.g., custom SSDs

or FPGA implementations).

In this paper,we take a different approach: How shouldwe revisit

this problem from the context of the DRS platform itself? Can we

add a novel caching layer within the DRS platform (that works on

commodity storage backend)? Can the caching layer be optimized

specifically for EV access patterns? To address these questions, we

built EVStore: a novel EV table caching layer in DRS inference

pipelines that exploits available DRAM and the structure of EV

lookups to optimize end-to-end DRS inference latency. EVStore’s

main contributions lie in EVStore’s 3-layer “L1-to-L3” caching de-

sign (EVCache, EVMix, and EVProx):

(L1) EVCache: We built a caching layer (EVCache) where EV

tables are stored as key-values in the DRS memory and backend

storage. We harness an all-or-nothing EV access property: an in-

ference will query a set of keys to all of the EV tables, hence a

cache miss on just one of the keys will make the entire inference

slow. State-of-the-art cache replacement algorithms do not fit this

lookup pattern. Hence, we introduce the concept of groupability

and extend existing algorithms with “group scores” to rank keys

that are likely accessed together and retain them in the cache, in

turn increases the chances of getting a “perfect-hit” where all of

them simultaneously can be found in memory.

(L2) EVMix: To accommodate diverse latency and accuracy

tradeoffs, we delegate some space from the L1 into an “L2” seg-

ment that stores lower precision (16, 8, or 4 bits instead of 32-bit

floating point) embedding values. For instance, whereas the first

layer stores 32-bit floating point values (fp32), the second layer

can store lower precisions (e.g., in 16, 8, or 4 bits). We call this com-

bination of L1 and L2 as EVMix, a mixed-precision caching. This

brings several advantages: allowing more key-value pairs to be

cached, increasing hit rates, accelerating inferences, and boosting

throughput in trade for a minor loss of accuracy.

Sparse Feature

User Item

…Loc

0100010111001
… … 1100101110

10101000
11011110
00010001

…

EV Table

Lookup

Feature
DNNInteraction

Dense Features

Figure 1: DRS and EV Tables (§2). EV tables are used to ac-

curately translate the sparse categorical data into dense vec-

tors of numbers by revealing hidden relationships between

input features. These dense vectors can then be combined

with other dense features before being fed into the DNN

model to obtain the inference result.

(L3) EVProx: Finally, we leverage another unique characteris-

tic of embedding values: The value for a key that is not in the cache

can be replaced by a surrogate key whose value is “approximately

similar” to the original key’s value. We add a key-to-key caching

layer (L3) that maps each key to a surrogate key with a similar em-

bedding value. Furthermore, we choose surrogates that are likely

to reside in the L1/L2 cache to help alleviate accesses to the back-

end storage. To the best of our knowledge, the closeness of embed-

ding keys, computed using well-established statistical methods for

similarity analysis [26, 48, 59], has not been previously used for

DRS performance optimization.

We have fully integrated EVStore within Facebook (Meta)’s

DLRM [54], including various implementation-level optimizations

and offline supporting tools (≈9KLOC) that are released publicly

[1]. Our evaluation based on real productionDRS traces shows that

EVStore can reduce the average and p90 latency by up to 23% and

27% respectively, while increasing the throughput by 4× at only

0.2% accuracy reduction. Collectively, fully optimized EVStore im-

plementation can achieve a 94% reduction of the DRSmemory foot-

print. These memory savings correspond to hundreds of millions

of dollars for a large cloud provider [47].

2 BACKGROUND AND MOTIVATION

Consider a system asked to make product recommendations re-

lated to the query “food that kitty likes”. After processing

the natural language string with standard NLP methods like tok-

enization and stemming [39, 67], the system is provided with a set

of sparse (categorical) and dense (numerical) input features. These

features include high-dimensional representations of the words in

the sentence from the NLP engine, as well as supplemental infor-

mation, such as user attributes and location (Figure 1).

Deep recommendation systems (DRS) are recommendation

engines that leverage deep neural networks (DNNs). Unfortu-

nately, sparse categorical data, in particular those resulting from

processing text data, are a poor match for the DNNs due to the

unwieldy space and time complexity they impose during training.

Instead, input data is usually condensed before being consumed by

the DNNs—sparse text data, for instance, undergoes word embed-

ding into lower-dimensional vector space.

Embedding vectors (EV) are the most popular method for

densifying sparse input features for the DRS, effectively translat-

ing sparse categorical data into dense vectors of numbers [18].

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(A1, B4, C6, . . Z9)lookup

‘cat’

‘dog’

‘kitty’

A1

A3

A1000. . …

0.6 -0.1 0.3

0.4 0.3 -0.8

2 0.7 -0.1 0.3

EV Table A

Table B

Table C

A

Key Values (Vector)

Figure 2: EV table structure and lookup (§2). An example

of EV tables𝐴–𝑍 in a DRS. Each EV table represents the con-

version for a single type of categorical feature. A lookup in-

volves finding a key in each of the 𝑁 tables (𝑁 = 26 if the

DRS model has 26 categorical features which correspond to

EV table 𝐴–𝑍).

Internally, the translation is done by means of an EV table in

memory that simply returns the appropriate vector value, say

(0.7,−0.1, 0.3), corresponding to a given key, say ’kitty’, as illus-

trated in Figure 2. By reducing the dimensionality of the data, EV

tables also reveal hidden relationships between inputs. For exam-

ple, note that “kitty” and “cat” are practically synonyms in EV

table 𝐴 in Figure 2 because of the proximity of the corresponding

embedding vectors. The DNN itself need not recognize the syn-

onymy of “kitty” and “cat”: since similar words cluster together

in the embedding space, the queries “food that kitty likes”

and “food that cat likes” will produce comparable results.

EV tables are crucial components of a DRS, so let us consider

their structure and anatomy in more detail. Internally, each row

in an EV table consists of a “key” index and a number of columns

of floating point values representing the embedding vector corre-

sponding to the key. Under NLP word embedding, for instance, the

key may be a dictionary word like “cat”. The key could also rep-

resent a more complex category, such as the hash of a compound

string. The embedding vector columns are the values for latent

features or dimensions. Each cell is typically a 32-bit floating point

number (fp32). The cells are initialized as random values and grad-

ually updated via backward propagation during training towards

higher fidelity embedding vectors. The number of latent features is

a design decision: more dimensions increase the lookup precision

at the expense of larger tables.

A DRS lookup is the top-level inference query. Because each

EV table represents the conversion for a single type of categorical

feature, such as word-embedding within an NLP model, a single

inference may involve dozens of different EV tables, each with po-

tentially millions of rows [46, 52, 82]. In Figure 2, for example, 26

different EV tables must be consulted for a single inference. We

denote DRS lookups by:

lookup(A1,B4,C6,..,Z9),

where the number in the subscript represents a key in the table.

For instance, B4 refers to key number 4 in Table B.

EV tables are large and growing. Today’s recommendation

models have enormous feature sets to capture complex user be-

havior and preferences [23, 24, 30, 81, 83, 84]. Each categorical fea-

ture could assume 10
7–1010 different possible values [31, 58, 78],

implying that billions of embedding vectors are needed in prac-

tice to represent every unique feature. A billion embedding vec-

tors (rows) with 400 dimensions (columns) [46, 52, 82] of fp32

B4

A7

…

… ..

C6

… ..

Z9

…

A7

…A1or

(A1, B4, C6, . . Z9)lookup

EVCache EVMix EVProxL1 L2 L3
Key

Table A

Values KeyKey Alt. Key

Backend

Storage

Values

Table Z

fp8 vectorvectorfp32

Figure 3: EVStore design overview (§3). EVStore is

composed of EVCache (L1), an EV table caching layer with

various cache replacement options (§3.1+§4); L2, a second

caching layer which stores lower precision embedding such

as fp8 to enables EVMix, (§3.2+§5); and EVProx (L3), an em-

bedding approximation layer that caches mapping to surro-

gate keys (§3.3+§6). The lookup(A1,B4,C6,..,Z9)will lead to B4

hit in L1, C6 hit in L2, Z9 “hit” in L3 as it is replaced with the

value from a surrogate key A7, and A1 miss that will incur a

disk access.

type (cell size) would easily occupy 1.5 TB of memory. Further-

more, industry’s insatiable appetite for improved recommendation

accuracy demands more rows, extra columns, and larger vectors

(cells) to encode richer semantic relationships. Thus, the models

are growing rapidly—the sizes are tripling every two years (1.5×

annual growth), following Moore’s Law [16, 38], while the under-

lying DRAM-hungry DRS implementations already weigh heavily

in company budgets [30].

DRS pipelines are up against a scaling wall. Crucially, all

trends point to the continued burgeoning of DRS system sizes.

Recent projections predict that EV table sizes will imminently be

dozens of TB for some companies [16], flirting with the limits of

even the greatest memory capacity cloud instances available1. To

continue scaling DRS, a different approach is required.

3 EVSTORE DESIGN OVERVIEW

We present EVStore, a rethinking of DRS pipelines to accommo-

date large EV tables. With EVStore, EV tables are no longer re-

quired to completely fit in memory, allowing operators to grow

their DRSs or improve inference throughput by packing multiple

DRS pipelines among machines without running into rigid mem-

ory size constraints of individual machines. To the best of our

knowledge, EVStore is thefirst system that adds powerful caching

capabilities within a real-world DRS pipeline, including various

implementation-level optimizations. There are three key compo-

nents to the EVStore design, depicted in Figure 3:

a. EVCache provides the first level of caching (“L1”) with various

cache replacement options that are specifically tailored to han-

dle EV lookup patterns.

b. EVMix adds support for multi-tier caching layer (“L1+L2”) with

mixed precisions (e.g., 32, 16, 8, and 4 bit) across different layers

to provide better performance.

1At the time of writing, high-memory instances top out at 24TiB (AWS), and 12TiB
(Azure/Google Cloud).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

c. EVProx accelerates lookups via a novel “L3” layer that caches

approximate embedding to opportunistically replace a missing

key with a surrogate key that is likely to reside in L1 or L2.

3.1 EVCache

By adding a caching layer for EV lookups to the DRS pipeline,

the cache replacement policy begins to dominate the performance

of the lookup workload. Cache replacement algorithms have pri-

marily been designed for items with independent request patterns

(such as key-value stores), or where accesses concern ranges of

consecutive memory (such as virtual memory and storage sys-

tems). Unlike traditional caches, however, DRS lookups exhibit the

aforementioned “all-or-nothing” property when accessing cached

EV tables. That is, for every inference request, the key-value

lookup must be done across all constituent EV tables at the same

time, e.g. lookup(A1,B4,C6,..,Z9)—a cache miss for just one of the

keys (e.g., A1) will make the entire inference slow. This uncompro-

mising attribute stems from the neural network (NN) architecture:

the output value from each EV table is a portion of the input vector

into the NN, without which the NN yields ill-defined results.

We evaluated both popular and state-of-the-art caching algo-

rithms (LRU, LFU, ARC, CAR, Cacheus, ClockPro [19, 44, 50, 60])

against DRSworkloadswith the all-or-nothing property and found

their performance to leave an opportunity for improvement (§4.1).

We noticed that existing cache algorithms could be infused with

a novel notion of “groupability”. That is, EV-friendly algorithms

ought to consider the fact that keys are accessed as a group in EV

lookups. In a departure from ordinary caching systems, the input

into our EVCache layer involves multiple keys at once as a group,

rather than just a single key. With grouped keys, the objective of

our caching system is then to maximize the chance of getting a

“perfect hit” where all of the keys are found in the cache (§4.2).

We then also speak of perfect hit rate instead of just hit rate for

single key lookups.

To demonstrate the flexibility of the groupability notion, we ex-

tended three popular algorithms (LFU, CAR, and ARC) into EV-

LFU, EV-CAR, and EV-ARC, respectively (§4.3). These three EV-

Cache variants have different implementations and characteristics

that offer adaptability and choices in handling a variety of DRS

workloads. For example, EV-CAR and EV-ARC both adapt well to

EV-based and classical individual lookups in that it bolsters per-

fect hit rates without sacrificing the individual hit rates, whereas

EV-LFU is highly optimized for DRS workloads at the expense of

lower individual hit rates. Maximizing the perfect hit rate poses

an interesting algorithmic question: what simple online heuristics

can factor in groupability without undue computational overhead?

We detail our approach in Section 4.2.

3.2 EVMix: Mixed-Precision Caching

Another family of approaches for increasing cache performance,

besides improving the replacement policy, is to conduct domain-

specific packing, either through lossless or lossy compression of

values [14, 34, 64]. To balance EVStore’s all-important latency

goal with recommendation accuracy, we delegate some space from

the L1 into an “L2” segment that stores lower precision embedding

values. We call this combination of L1 and L2 as EVMix, a mixed-

precision caching. Moreover, the two cache tiers will have different

sizes and data precision but run the same cache replacement pol-

icy. Recalling that EV are stored as 32-bit floating point values

(fp32), there is an opportunity to lower the resolution of the float-

ing point value to 4, 8, or 16 bits—allowing the cache to keep more

values in memory in exchange for a minor reduction in accuracy.

For instance, whereas the first layer (L1) stores 32-bit floating point

values (fp32), the second layer (L2) can store lower precisions (e.g.,

in 16, 8, or 4 bits). Users can adjust the resolution and size to bal-

ance the desired accuracy and performance. EVMix uses fast cod-

ing optimizations that harness the specifics of embedding vector

management, detailed in Section 5.

3.3 EVProx: Approximate Embedding

Another unique characteristic of embeddings that differentiates

them from typical key-value data: embedding vectors reside in rela-

tively smooth (high-dimensional) metric spaces with well-defined

distances between vectors. Thus, building on ideas from nearest-

neighbor clustering, the original value of a key may be approxi-

mated by the “similar” value of a nearby neighbor. That the neigh-

bors have comparable values stem from an empirical smoothness

property called the embedding value similarity [33]. While such

clustering techniques are popular for analyzing and reducing the

complexity of high-dimensional data, we are not aware of any

work that exploits them explicitly for performance optimization.

Using these ideas, we propose another layer, EVProx, that al-

lows a key-value cache miss to be replaced by a surrogate key

whose value is likely to be cached in L1/L2, hence avoiding a

lookup to the backend storage. Without this L3, if a key is not avail-

able in L1 and L2, slow disk access would be needed. Accordingly,

L3 can be viewed as a key-to-key caching layer that maps a key to

a surrogate key with a similar embedding value. For example, in

Figure 3, the key Z9 is a miss on L1 and L2. Before going to the

disk, we check L3 and find that A7 is the surrogate key of Z9. Since

A7 is already stored in L1, the disk access is prevented. Further-

more, since having a key-to-key caching requires much less space

compared to caching the whole embedding value, EVProx needs

minimal space and will only occupy a small percentage (≤ 5%) of

the total cache size. Section 6 further describes the challenges of

implementing the L3. For instance, for every key, how do we estab-

lish the appropriate surrogate keys? Also, which key is more likely

to reside in L1/L2?

3.4 Implementation and Integration

Our final contribution is in the implementation and integration of

EVStore in a real DRS platform, specifically the Facebook DLRM

framework [54]. We explored various implementations along sev-

eral dimensions including supporting various storage backends

(RocksDB[3], SQLite[9], CORTX [12], and UNIX files [65]). We

then embedded a new caching layer inside the DLRM through two

approaches: via the tensor library and via the EVCache layer with

our optimized data structures. We also migrated our Python imple-

mentation to C++ to better support mixed precision, harness multi-

threading, and optimize data reuse with the help of dynamic mem-

ory allocation and pointer manipulations. We added ≈7KLOC to

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0.5 1 5 10 20
0

50

100

H
it

-r
a
te

 (
%

)

% of data in memory

LRU LFU ARC Cacheus ClockPro

Individual-hit Perfect-hit

Figure 4: Individual vs. perfect hit rates (§4.1). Existing

algorithms have high individual hit rates (solid bars), but

relatively low perfect hit rates (striped bars) across various

cache sizes.

the Facebook DLRM and ≈2KLOC of offline tools for benchmark-

ing EVCache algorithms and EVProx approximate embeddings.

4 EVCACHE (L1)

In this section, we evaluate the performance of different caching

algorithms on EV lookup workloads (§4.1), describe how we ap-

ply our groupability principle to improve the perfect hit rates of

these algorithms (§4.2), and demonstrate how the principle can be

adopted across various caching policies (§4.3).

4.1 The Importance of Perfect Hits

The caching literature is replete with algorithms, from the basic

policies (such as LRU, CLOCK, and LFU [25, 44, 55, 65]) to the

more dynamic/adaptive variants (such as LIRS [37], CAR [19], ARC

[50], ClockLIRS [37], and ClockPro [36]), and finally the machine-

learning based ones (such as Cacheus [60] and LeCAR [66]). To un-

derstand how they relate to our problem domain, we evaluate the

performance of these algorithms on EV lookup workloads. Recall

that to serve a single inference request with 𝑁 sparse features, the

DRS must convert those sparse features to 𝑁 dense features by do-

ing EV lookups to 𝑁 different EV tables. Any cache miss on one of

the EV tables requires access to the backend storage (e.g., SSD and

HDD)which generally is orders ofmagnitude slower thanmemory

access, thus slowing down the entire inference.

To quantify caching performance, we use two metrics. First,

the individual hit rate, the typical metric used when evaluating

caching algorithms, concerns the ratio of key-value lookups that

are found in memory, regardless of how many embedding tables

are used in a single inference. Next, the perfect hit rate is the ratio

of how often all 𝑁 keys (from a single inference request) are found

in the memory, a scenario where no data needs to be fetched from

the disk before running pass forward phase in DRS pipeline.

Figure 4 shows the results when we have 𝑁 = 26 using the

Criteo dataset [6] (details in the evaluation section). Here we only

show 5 algorithms for readability. For the individual hit rate (solid

bars), as expected, the algorithms can reach 60–90% hit rate (verti-

cal axis) when the cache size is 0.5–20% of the size of all the tables

(horizontal axis). However, the perfect hit rate is significantly lower,

ranging only from 1% to 50% (the striped bars), mainly because exist-

ing algorithms do not take into account the group-based access pat-

tern. Moreover, as the cache size increases, the individual hit rate

tends to increase in a lower rate than the perfect hit. This demon-

strates that while current algorithms may be effective at finding

individual items in the cache, they are less effective at finding all

items in a set.

4.2 Replacement Policy Extension

While traditional cache lookups rely on one key per lookup, EV-

Cache operates on multiple keys for every single inference (we

call them “grouped keys”). Fortunately, in a DRS the cardinality

of the group is fixed (e.g., 26 keys whose values will be supplied

to a constant number of features in the neural network model).

EVCache introduces the concept of “groupability” into embedding

cache management by adding a scoring metric groupScore for ev-

ery key in the cache. Keyswith high scoreswill remain in the cache

while those with lower scores will likely be evicted. Therefore, we

need a caching algorithm that prioritizes embeddings with high

group scores over the ones with low group scores, hence increas-

ing the perfect hit. Below we describe how EVCache works from

the perspectives of four fundamental caching operations: cache

lookup, state update, insertion, and eviction.

Cache lookup: An inference will trigger a grouped-keys

lookup, e.g. lookup(A1,B4,..,Z9). EVCache will calculate the to-

tal cache hits among the 26 individual key lookups. Let’s suppose,

20 out of the 26 are cache hits. EVCache will memorize the group

score of 20 and use it in the next caching operations.

Cache state update: For every key with a cache hit, e.g. B4, its

value stored in the cache will be read and prepared to be supplied

to the neural network. EVCache will then update the B4’s group

score in the cache with the max of the current and the new score.

For example, if key B4 is a hit and its current group score is 15, then

EVCache will update B4’s score to 20 (the memorized score). The

detail on the “max-based” group scoring and other scoring methods

are covered at the end of this section.

Cache insertion: For every key with a cache miss, EVCache

looks up the value from the backend storage and inserts the key-

value to the cache with a score value of 20 (the memorized score).

If the cache is full, EVCache needs to evict some key-values from

the cache, even if they have higher scores than the scores of the

to-be-inserted keys. This is because decades of caching research

have shown that recency (introduced by the newly inserted keys)

is an important factor in caching performance [25, 36, 37, 55].

Cache eviction: The key-values in the cache are sorted based

on the group scores. EVCache by default evicts keys with the lowest

group scores. Note that within one group score, there could be any

arbitrary number of keys. Since eviction will happen frequently,

we must use the appropriate data structure to avoid any bottle-

neck and minimize the overhead. Thus, we pick an unordered_set

data structure to store those keys efficiently. Specifically, there is

one unordered_set per group score. This data structure gives min-

imum overhead during eviction because it has an O(1) runtime.

Summary:We keep our “max-based” group scoring method rel-

atively simple for two reasons: it is computationally cheap while

giving the best perfect-hit rate improvement compared to other

scoring methods we tried, including average, sum, median, static,

and dynamic-based ones. Score calculation based on average, sum,

and median will not only increase the metadata size but also the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

computational cost. We also tried an incremental update with a

static increase of 𝑥 (e.g., 𝑥 = 1) but struggled to define an optimal

value of 𝑥 in a dynamic workload. Furthermore, since every newly

inserted key has the same value of 𝑥 , highly groupable keys may

readily be evicted soon after they are inserted. Defining a dynamic

value of 𝑥 likely requires a more complex implementation—some

of the approaches we tried decreased the perfect hit rate by 50%

despite being 30× slower.

Overall, our groupability concept targets the relationships be-

tween cached embedding data that were requested at the same

time. Harnessing relationships between items have been exten-

sively explored in the cache literature, ranging from long-standing

observations about the relative recency of requested data [22,

25], tenuring highly-frequent items [44], exploiting other data

attributes [20–22], and even learning request histories through

non-linear machine-learning approaches [63]. To the best of our

knowledge, the systems literature has not before considered caches

where requests arrive together as a set of items. Under such a

model, the relationship between items in the same set adds a di-

mension to the analysis that transcends the traditional dynamical

notions of frequency and recency that abound in the cache liter-

ature. Our intuition is to strongly inform cache eviction by pro-

viding fate sharing of friends through a scoring function–to have

items that are accessed together reinforce, or abate, the scores of

one another. The next section shows how we integrated the scor-

ing extension (as part of the groupability concept) into popular

cache replacement policies.

4.3 EVCache Variants

To show generality, we implemented our extension to three popu-

lar (base) algorithms: LFU [44], CAR [19], and ARC [50]. Our three

EVCache variants (EV-LFU, EV-CAR, and EV-ARC) have differ-

ent implementations and characteristics. The main differentiator

is how the base algorithms could accommodate group scores into

their data positioning mechanism which also influences their evic-

tion policy. In the interest of space, we will not describe the base

algorithms in detail (interested readers can refer to our code [1]).

1. EV-LFU: This algorithm is the modified version of the Least

Frequently Used (LFU) cache replacement policy. We replace the

default frequency counter in LFU [44] with a group score. This

means that upon a cache miss, EV-LFU will evict the cached item

with the lowest group score. If there are multiple items with the

same group score, EV-LFU will evict the least recently inserted

item. The group score used in EV-LFU has a maximum value (e.g.,

26 in our main experiment), which ensures that the scores of items

in the cache do not become too large over time. When most of the

cached items reach the maximum score, recently cached keys with

lower group scores start to face higher eviction pressure. To avoid

class imbalance, EV-LFU implements a flushing mechanism with a

tunable knob. Specifically, if the number of maxScoreKey (key with

maximum group score) is higher than the “maxScoreKeyCapacity”

(e.g., 20%), EV-LFU will reduce the population of the maxScoreKey

by 𝑋% (where 𝑋 can be adjusted dynamically).

Furthermore, both LFU and EV-LFU are categorized as stack al-

gorithms which makes them free of Belady anomaly. Specifically,

in a stack algorithm, the items evicted by a larger cache will be

a subset of those evicted by a smaller cache if both were to see

the same request sequence—a property known as cache inclusion—

independently of those cache sizes. Conveniently, the hit rate of

stack algorithms increases monotonically with cache size [61],

which provides a further degree of robustness to EV-LFU in prac-

tical settings.

2. EV-ARC: ARC [50] is an adaptive algorithm designed to rec-

ognize access recency and frequency by dividing the cache into

two lists: R-list (recency-based) and F-list (frequency-based).

R-list holds items accessed once while F-list keeps items ac-

cessed more than once since admission. To dynamically adjust the

size of the probationary segment (R-list) and the protected seg-

ment (F-list), ARC uses information about recently evicted cache

items (stored as R-ghost and F-ghost lists). For EV-ARC, we add

group score as a metadata to every cached item. We then modify

the F-list to use EV-LFU’s counting, eviction policy, and flush-

ing mechanisms. The difference is that cached items flushed from

the F-list will be transferred to the tail of the R-list. The ghost

cache size will be adjusted so that the number of the cached pages

in R-list and R-ghost is equal to the number of the cached page

in the F-list and F-ghost.

3. EV-CAR: CAR [19] is an algorithm that combines ARC and

the popular CLOCK second-chance algorithm. For EV-CAR, we

modify the reference bit, 𝑅 variable, so that it will store the group

score instead of just storing 0 or 1. During the eviction phase, the

CLOCK hand will only evict the cached item that has 𝑅 = 0, oth-

erwise, it will be challenged by the incoming key. If the incoming

key’s group score is larger than the current item (pointed by the

CLOCK hand), EV-CAR will not evict that item, but give a second

chance to the current item by setting its 𝑅 to 0. EV-CAR also mod-

ifies the CLOCK mechanism by introducing a “progressive decre-

ment” method which allows the 𝑅 value to be decreased regard-

less of the group score of that item. This method guarantees the

CLOCK hand to find an item to evict within a single rotation (𝑂 (𝑛)

complexity where 𝑛 is the number of items in the cache). In a cache

hit, EV-CAR applies max-based scoring (§4.2) which replaces the

current group score if the new score is bigger.

5 EVMIX (L2)

To make our caching layer more versatile in addressing various

latency and accuracy tradeoffs, we introduce EVMix, a multi-tier

mixed-precision EV caching system. In this section, we first de-

scribe the advantages of EVMix (§5.1), its design (§5.2), and the bit

coding optimizations (§5.3).

5.1 Advantages of Mixed Precisions

An embedding vector is stored as floating point values. In most

systems such as DLRM [54] and DCN [70], the default precision

is fp32 (32 bits). However, EVMix caching layer can store those

values in a lower precision format such as in 16, 8, or even 4 bits

depending on the target accuracy.

EVMix can bring several advantages. (a) Faster inference latency.

By accessing smaller bit representations, we can improve the av-

erage EV lookup latency by 15%, which is significant because EV

lookup can cover 40% of the end-to-end inference latency. (b)More

cached items and higher cache hits. With lower precisions, we can

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

cachemore embeddings (e.g., 8xmore cached itemswhen the 32 bit

EV is converted to 4 bit), and by implication, the cache hits will be

higher, which in turn increases the throughput of the caching layer.

(c) Configurability via multiple layers. With multi-tier caching, one

can adjust the size and the precision of the first level cache and

the second level cache based on the latency-accuracy tradeoffs to

make caching more versatile. (more in the evaluation section).

5.2 Multi-Tier, Mixed-Precision Design

As shown earlier in Figure 3, EVMix is the combination of L1 and

L2 which collectively forms a mixed-precision caching. Each tier

runs the same cache replacement policy. L1 stores high or medium

precision data (e.g., 32 or 16 bit) and L2 stores lower precision data

relative to L1’s. (e.g., 4 bit). Users can adjust the precision of L1 and

L2 and their sizes based on the performance-accuracy tradeoffs.

The size proportion of L1/L2 is fully adjustable. If L1 and L2 have

the same memory size, the L2 can carry at least 2× more items

(due to the lower precision storage). Upon a cache miss on L1, we

try to get a lower-precision data from L2. If we also get a miss

in L2, we will fetch the raw data from the backend storage and

put their representations to either L1 or L2 based on the group

score. To minimize the accuracy loss associated with using EVMix,

the popular items are stored in L1 while the less popular ones are

packed in L2. Our L1/L2 placement algorithm also ensures that the

items are not redundantly stored.

Furthermore, to maximize performance, we implement EVMix

in C++ which utilizes multithreading capabilities to parallelize any

atomic operations in both layers. To simplify the logic and to re-

duce the context switching, we design the thread organization in

such a way that the task for L2’s threads is triggered and managed

by L1’s thread. In addition, we only implement event-driven par-

adigm on specific tasks that require heavy I/O and computation

such as reading from files and binary decoding operations. Finally,

we utilize a confined memory sharing to capture the results from

all threads concurrently with minimum blocking.

5.3 Bit Coding Optimization

As part of the process above, EVMix stores the embedding data in

an encoded format (4, 8, 16, or 32 bit) and continuously decodes

the cached data on every cache hit. The decoded data will be fed

to the neural network model in the subsequent phase of the DRS

pipeline. To further improve the performance of EVMix, the de-

coding process must be optimized, especially for the 16, 8, and 4

bit format since there is no default (standardized) floating-point

binary format for them.

As EVStore is built specifically for caching embedding vector

data, it exploits the fact that the values of these vectors range

only from -1 to 1, rather than an arbitrary range of values. More-

over, the typical value distribution is a Gaussian bell-shaped curve

where the occurrence/frequency is most highly concentrated near

0. Therefore, to make the most efficient use of each bit, we design

the coding procedure to better represent this “dense region” of val-

ues. We design the coding procedure for simplicity to ensure that

decoding remains computationally cheap and does not become a

bottleneck in our caching systems.

The scheme works as follows. (a) 16 bit: We store the value as

an unsigned short. The mapping is straightforward, the smallest-

positive EV value will be mapped to 0, while the biggest-positive

EV value to 65534.We utilize the last digit as our sign bit to cheaply

differentiate the positive and negative embedding. Specifically, if

the last digit is odd, the value is considered negative, and if the last

digit is even, the value is considered positive. The decoding phase

will convert each value into a corresponding floating-point value

proportionally. (b) 8 bit: In this case, we can only store values rang-

ing from 0 to 255. Similar to the 16 bit, wemap the embedding value

linearly. The -1 is mapped to 0; the +1 is mapped to 254; and, every-

thing that falls in between will bemapped proportionally (e.g., 0.23

is mapped to 156). As a result, we use 255 values out of 256 which

consists of 127 values covering the negative EV, another 127 cov-

ering the positive EV, and 1 value that is mapped into 0. (c) 4 bit:

Although 4 bit can represent 16 values, but we only use 15 values

(7 positives, 7 negatives, and a zero mapped value) to cover the EV

range. Most of the value mappings are focused near 0. Specifically,

we pick -0.0625 to 0.0625 as the dense region range in a manner

similar to Posit’s [57] 4-bit mapping. Overall, our encoding mecha-

nism only uses static dictionary mapping and basic operators (XOR

and mod) which result in a negligible (<1%) CPU overhead.

We further explored Posits library (C++) which is specifically de-

signed to encode embedding values and quantizemachine learning

weights for lower precision. Despite having a well-researched en-

coding design that better preserves near-zero values, the library

induces costly overhead due to its custom binary operations—

compared to our encoding design, the Posit library is 3× slower.

Given that the decoding operation will be done on every single

value retrieval, we decided to use our simple encoding design as

described above.

6 EVPROX (L3)

Recall from §3.3 that our caching capabilities are built from the

unique characteristics of EV lookupworkloads. In EV lookupwork-

loads, a value of a key can be replaced by a surrogate key’s value

that is “approximately similar” to the original key’s value. The em-

bedding value similarity [33] is calculated through cosine and Eu-

clidean vector distances [26, 48, 59]. These well-established sta-

tistical methods are popular for analyzing and reducing the com-

plexity of high-dimensional data. However, we are not aware of

works leveraging them explicitly for performance optimization.

Thus, we adopt the approximate embedding concept in our last

caching layer, EVProx, allowing a key-value cache miss to be re-

placed by another similar (and popular) surrogate key whose value

is likely to reside in L1/L2, thus preventing a lookup to the backend

storage. Furthermore, we populate the L3 with the downgraded

keys from both L1 and L2 in order to better retain the warm keys

in the cache.

Our design ensures heavy non-blocking tasks, especially I/O,

are conducted in parallel at massive performance savings. When in-

serting a new key to L3, we enqueue the incoming keys and batch

insertions into the L3. L3 uses dedicated I/O threads to fetch all

missing values in parallel. Once all key mappings data are in mem-

ory, they are inserted to the L3 sequentially. To best prolong hot

items in the L3, we add a reference (𝑅) bit to every cached item in

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

L3 that is similar to CLOCK policy’s implementation of the second-

chance eviction mechanism (§4.3).

6.1 L3 Dataflow

Looking at Figure 3, suppose we perform lookup(A1,B4,Z9) and

Z9 is the only key not being cached in L1/L2. Before adding L3, we

need to read Z9 and its value from the disk. Now we consult L3, a

key-to-key caching layer that will tell us whether there is another

key (say A7) that has a “similar” embedding value to Z9 . The A7 is

called a surrogate key to Z9 , and may come from different embed-

ding table. Note that there can be many other keys whose values

are similar to the missing key Z9. In that case, L3 will pick the most

popular key (as a surrogate) measured based on its group score. In

this example, L3 keeps a mapping between C6–A7 because of A7’s

high group score, hence increasing the likelihood that A7 will be

found in L1/L2.

Remark that L3 is a special key-to-key caching layer that does

not cache any value (it only caches the keys). Thus, if a lookup of

Z9 is a hit in the L3 layer, we can retrieve the surrogate key (in this

case, A7). If A7 is found in L1/L2, an alternative value is found and

no disk access is needed. However, if Z9 lookup is a miss in L3 or A7
is also missing from L1/L2, then we will fetch Z9 and its value from

the backend storage and store it in either L1 or L2 as explained in

§5.2 about multi-tier and mixed-precision design.

6.2 Preprocessing Surrogate Keys

In designing EVCache, we encountered the following challenges:

For every key, how do we determine what other keys are “similar”

within the embedding space? Further, among the multiple poten-

tially similar keys, how do we decide which one is most likely to

exist in L1 and L2 cache? Finally, how and when should we popu-

late the L3 cache? To answer these questions, we build the key-to-

key mapping in an offline preprocessing manner in the following

way. Note that we assume throughout that the embedding table

remains static during the inference phase.

To perform similarity analysis, we adopt the statisticalmeasures

of Euclidean and cosine distances [26, 48, 59] that define similar-

ity in terms of vector-distances [53]. This similarity analysis can

be done once and the result can be reused. At the end of this stage,

every key in the embedding table has a list of Nmost-similar neigh-

boring keys (in our setup, the N=10). To produce the L3 key-to-key

mapping, we simply pick the most popular key among the top-

10 keys. To measure the popularity, we consider the historical ac-

cesses and record the access frequency of every key. By the end,

supposing there are 1 million keys in the embedding table, then

there is a mapping of 1million keys to another key that is most sim-

ilar and frequently accessed. Next, those mapping will be stored as

a file which will make it easy to perform an online update without

any shutdown. The workload type and the size of L1/L2/L3 will

greatly affect the remapping frequency. If the popularity ranking

is quite stable/static throughout the workload, the remapping can

be avoided. In general, the remapping should be done when L3 hit

rate drops significantly. The analysis of optimum remapping deci-

sions is out of our scope. It can be studied further in future works.

Finally, given that all of these tasks are done in the background,

they will not introduce any bottleneck and latency overhead.

7 IMPLEMENTATION

EVStore is built within the popular Facebook PyTorch-based

DLRM framework [54] that supports both recommendation model

training and inference. The EVStore implementation is ≈9k LOC

(≈4k LOC in C++, ≈4k LOC in Python/Bash scripts, ≈1k LOC in

Java). The source code of EVStore, including various experiment

and deployment setups, is publicly available on our GitHub repos-

itory [1]. We believe EVStore is the first system to support sub-

stantial caching capabilities for the EV Table lookups in this DRS

framework. The details of each implementation component are ex-

plained below.

Storage backend: We extend the DLRM code to include a cus-

tom EV lookup from various key-value storage systems (RocksDB,

SQLite, CORTX) and Unix files. This extension is written in Python

and is approximately 2KLOC, with the majority of the code be-

ing part of the embedding-storage library. The data are stored as

a stream of binary values which consists of floating point arrays.

To read a specific EV value from a file, we compute the offset of

the data using its key, then use seek() to directly jump to the be-

ginning of the bytestream. The data can then be fetched from the

file using either a memory map (mmap) or direct IO. Additionally,

the data is sent to PyTorch as a bytestream, which eliminates the

need for serialization and reduces overhead. We added a module

in PyTorch to convert the bytestream into a Tensor format.

Caching layer (Python code in DLRM): The next question is

where to implement L1.We first built it inside the storage backends

mentioned above, but later realized that the performance could be

further improved if it was embedded inside the DRS platform. To

find the best place to integrate our caching layer, we must first un-

derstand how DRS systems, such as Facebook DLRM, handle the

sparse-to-dense conversion. In Facebook DLRM, before the pass

forward phase in the inference pipeline, by default the sparse-to-

dense feature transformation reads embedding data via the tensor

library. Thus, we implement L1’s data structure, which mainly uti-

lizes set and hashmap data structures, to replace the default tensor

lookup. Turns out, our own choice of data structures is much faster

as it is a “thinner” layer compared to the complex tensor library.

Optimized layer (in C++) for EVMix: As we support mixed

precisions in L1+L2, we learned that a C++ implementation is eas-

ier to manage and optimize, especially for bitwise operations. Fur-

thermore, most of the arrays in the implementation are stored in a

plain pointer-to-pointer structure, which has better CPU efficiency

than built-in vector data structures.

In themixed-precision experiment, it is necessary to encode and

decode an unusual size of floating-point data, such as 4, 8, and

16 bit values. By default, C++ aligns floating-point data at 32-bit

boundaries, so we used ushort and uchar to store 16 and 8-bit pre-

cision data, respectively. When it comes to storing 4-bit data, it is

not possible to use the ushort or uchar data types, as these can

only store values up to 16 and 8 bits, respectively. In order to store

4-bit data, we take advantage of the fact that two 4-bit values can be

packed into a single byte of uchar data. This allows us to store and

manipulate 4-bit data efficiently, without wasting any bit spaces.

Managing concurrent accesses to L1/L2 required the use of

multithreading to minimize the overhead of context-switching

and locking. To do this, we stored the results in thread-specific

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0

10

20

30

L
R

U

C
lo

ck

L
eC

a
r

D
L

IR
S

L
IR

S

A
R

C

L
F

U

C
A

R

C
lo

ck
L

IR
S

C
a
ch

eu
s

C
lo

ck
P

ro

E
V

-C
A

R

E
V

-A
R

C

E
V

-L
F

U

P
er

fe
ct

-h
it

 r
a
te

 (
%

)

Figure 5: Exp. #1 (§8.2): Perfect hit rates across caching al-

gorithms. EVCache algorithms (EV-CAR, EV-ARC, EV-LFU)

have the highest perfect hit rate compared to others.

memory regions, which allowed us to avoid interference between

threads. Additionally, we explored several interfaces to facilitate

the data transfer between DRS and the C++ caching layer, includ-

ing socket [75] and ctypes [42], which we will evaluate later.

Offline tools: Besides changes to the DLRM platform, we also

implemented two offline tools, for cache algorithm benchmark-

ing and approximate embedding (EVProx) preparation. The for-

mer is written in Java and built on top of the Cache2K simulator

[11]. In this platform, we prototyped EVCache algorithms and all

our baseline algorithms including LRU, LFU, LIRS, ARC, CAR, and

ClockPro. For EVProx preprocessing, we developed an embedding-

similarity analysis framework, chiefly written in Python.

8 EVALUATION

To evaluate EVStore performance, we subjected it to numerous

experiments to determine the end-to-end performance while con-

ducting microbenchmarks over multiple dimensions, such as vary-

ing the cache algorithms, cache sizes, number of EV tables, work-

loads, and the use of EVMix + EVProx.We structure our evaluation

as a sequence of experimental questions.

8.1 Experimental Environment and Setup

TheDRS inference pipeline: (1) A user visits a webpage that has

an advertisement managed by Criteo. (2) When the user interacts

with the ads, it will trigger a request sent to the Criteo’s server that

contains all info about the user, the ads, and the webpage that is

currently visited. (3) Once the inference request arrives, the server

will take the sparse features, look up the EV tables, convert them

to dense features and feed them to the DNN model. (4) By default,

each lookup is for 26 keys to 26 tables. (5) With EVStore, if a key-

value is not in the cache, the DRS pipeline will fetch the data from

the raw files in the backend storage. (6) Finally, the inference re-

sult will influence the personalized advertisement of the user when

they open another webpage managed by Criteo.

Datasets/workloads:Weprimarily use theCriteoCTR (Click-

Through Rate) datasets, the largest open-sourced CTR dataset (up

to 1 TiB in size) that could simulate EV lookups at scale. There

are two CTR datasets released by Criteo, the 1TB data (Criteo-

Terabyte) [4] and the Kaggle version (Criteo-Kaggle) [6]. It con-

tains feature values and clicks feedback for millions of display ads.

LRU

Clock

LeCar

DLIRS
LIRS
ARC

LFU
CAR

ClockLIRS
CacheusClockPro

EV-CAR

EV-ARC

EV-LFU

80

81

82

83

84

85

86

10 15 20 25 30 35

In
d

iv
id

u
a
l-

h
it

 r
a
te

 (
%

)

Perfect-hit rate (%)

Figure 6: Exp. #1 (§8.2): Individual and perfect hit rates

across algorithms. EV-LFU achieves higher perfect hit rate

by sacrificing on individual hits.

There are 13 dense integer features and 26 sparse categorical fea-

tures (hence 26 EV tables). All EV tables have the same embed-

ding dimensions of 36. There are a total of 156 billion total (dense)

feature values and over 800 million unique attribute values. In ad-

dition, we also use Avazu’s CTR dataset [5].

Default values:We omit redundant lines and numbers on some

of the graphs for improved readability. These are our default val-

ues (unless otherwise noted): cache size of 5% of the total working

set (the total size of all tables), the Criteo-Kaggle dataset [6] as the

workload, and fp32 as the precision of the embedding values. La-

tency is measured in average latency in milliseconds.

Machine specification: We use Chameleon cloud’s

gpu_rtx6000 and gpu_v100 nodes [2, 41] which have Intel

Xeon Gold CPU @2.60GHz and 240GiB Samsung SSD SM863a

Series. We limit the DRAM using Linux cgroup tools to be small

enough such that the DRS essential functions could run, but not

big enough to store all the EV tables. When evaluating cache size

smaller than the available DRAM, we flush the Operating System

(OS) page cache every 0.25ms to avoid any EV tables being cached

by the OS. The method has been thoroughly tested to ensure there

is no OS cache leak.

8.2 EVCache

We begin with experiments on the first layer of the cache.

Experiment #1: How much does the EVCache algorithm

affect perfect hit rates? Figure 5 shows that EVCache (EV-∗)

algorithm extensions improve upon state-of-the-art algorithms

such as LRU [25], CLOCK [55], LeCar [66], LIRS [37], ARC [50],

LFU [44], CAR [19], ClockLIRS [37], Cacheus [60], and ClockPro

[36]. The perfect hit rates are increased by up to 18%, lending

support to the need for groupability for EV-based caches. Figure

6 breaks the result down further to compare the perfect and

individual hit rates (as defined in Section 4.1). Here, EV-CAR and

EV-ARC both improve the perfect hit rates without compromising

on individual hit rates, suggesting that they can be used as a

general caching algorithm too. In contrast, EV-LFU increases the

perfect hit rate while sacrificing the individual hit rate for each of

the tables (which is acceptable since the perfect hit rate is more

significant for DRS).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

0

20

40

60

80

100
.0

5 .1 .5 1 5 10 20 30 40 50 60 70 80 90

P
er

fe
ct

-h
it

 r
at

e
(%

)

% of data in memory

EV-LFU
ClockPro
Cacheus
LRU

Figure 7: Exp. #2 (§8.2): Perfect hit rates across

various cache sizes. Our EV-LFU has the high-

est perfect hit rate compared to other represen-

tative algorithms across various sizes.

0

10

20

30

40

50

5 10 15 20 26

P
er

fe
ct

-h
it

 r
a
te

 (
%

)

Number of EV Tables

LRU Cacheus

Figure 8: Exp. #3 (§8.2): Perfect hit rates

on different number of EV tables. EV-LFU

shows steeper benefit as the number of EV

tables grows (e.g., 5 to 26).

0

10

20

30

40

AV CK CT

Workload Name

ClockPro EV-LFU

Figure 9: Exp. #4 (§8.2): Per-

fect hit rates across various

datasets. EV-LFU has the

best perfect hit rate

0.0
0.3
0.6
0.9
1.2
1.5

SQ
Li

te

CO
RTX-M

ot
r

Fi
le

-m
m

ap
-p

y

Roc
ks

D
B

Fi
le

-d
ire

ct
IO

-p
y

Te
nso

r (
ba

se
)

EVCac
he

E
V

-L
o

o
k

u
p

L

a
te

n
cy

 (
m

s)

DLRMOS

KV Store

Figure 10: Exp. #5 (§8.2: The most efficient place to imple-

ment the caching layer. An optimum place to deploy EV-

Cache is inside the DLRM framework (e.g., PyTorch) using

our own data structures as opposed to using PyTorch tensor

library or inside the OS or an external dataabase/KV store.

Experiment #2: How does EVCache perform across various

cache sizes? In Figure 7, we vary the cache size from 0.05% to

90% of the total working set (horizontal axis). To reduce clutter,

we show four representative algorithms (LRU as a basic algorithm,

ClockPro as an adaptive one, Cacheus as an ML-based algorithm,

and EV-LFU as EV-Cache variant). Here, the EVCache (specifically

EV-LFU) outperforms others across all cache sizes. Compared to

LRU, EV-LFU significantly increases the perfect hit rate by up to

35% while surpassing both Cacheus and ClockPro by up to 10%.

Experiment #3: How does the number of EV tables affect per-

formance? Figure 8 shows that the perfect hit rate improves with

more EV tables (horizontal axis) when using EV-LFU. As expected,

traditional algorithms, being agnostic to relationships between EV

tables, struggle to achieve a high perfect hit rate when the number

of EV tables grows.

Experiment #4: How does EVCache perform across various

datasets? Figure 9 compares the four representative algorithms

across three different datasets. We find that our algorithm exten-

sions improve upon other algorithms across all the datasets: Avazu

(AV) [5], Criteo-Kaggle (CK) [6], and Criteo-Terabyte (CT) [4].

Experiment #5: Which layer is the best to implement EV-

Cache? When implementing EVCache on Facebook DLRM (in

this case inside PyTorch), we tried various storage backends, in-

cluding key-value (KV) stores (such as SQLite, CORTX-Motr, and

0

1

2

3

4

1 5 10 20

LRU EV-LFU

% of data in memory

L
a
te

n
cy

 (
m

s)

Figure 11: Exp. #7 (§8.2): End-to-end DRS inference latency

on various cache sizes. Each bar uses the 1𝑠𝑡 , 25𝑡ℎ , 50𝑡ℎ ,

75𝑡ℎ , and 99𝑡ℎ percentiles. Our EV-LFU delivers lower la-

tency compared to the LRU implementation.

RocksDB) and UNIX files via mmap and read/write APIs. By de-

fault, the EV tables in DLRM are stored as “tensor” data structure.

However, we implement our own data structure of choice (set and

hashmap), as part of EVCache package, to be compared against the

default DLRM’s tensor. In this experiment, we put all EV tables in

the memory, simply to measure the pure cache lookup latency as

if we have enough memory to cache all of the EV tables. For key-

value stores, we cache the tables in their own caching layers. For

UNIX files, we depend on the OS cache. Figure 10 shows that rely-

ing on external caching layers in KV stores or OS cache do not give

the best latency compared to adding our own caching layer inside

the DLRM pipeline (PyTorch in this case). Furthermore, by imple-

menting our own thin caching layer, we get better performance

than using the default PyTorch tensor.

Experiment #6: What EVCache algorithm should be imple-

mented? After deciding the best place for the caching layer, we

need to decide which algorithm to implement (EV-CAR, EV-ARC,

or EV-LFU). For this, we need to port our implementation from the

cache simulator to the Facebook DLRM framework. Among them,

EV-CAR gives the smallest perfect hit rate, and between EV-ARC

and EV-LFU, they provide comparable performance in small cache

sizes but EV-LFU is slightly better at higher (≥ 50%) cache sizes. In

our cache simulator, Cacheus, ClockPro, EV-ARC, and EV-LFU are

written in 800, 430, 270, and 130 LOC respectively. Thus, EV-LFU

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

P
y

th
o

n
 (

b
a

se
)

C
-S

o
ck

e
t-

1
-t

h
d

C
-C

ty
p

e
s-

1
-t

h
d

C
-C

ty
p

e
s-

6
-t

h
d

0

0.5

1

1.5

2

L
a
te

n
cy

 (
m

s)

Figure 12: Exp. #8 (§8.3): Im-

plementation variants of EV-

Mix. Python-based imple-

mentation improved by a 6-

threadsC versionwith Ctypes.

0

0.5

1

1.5

2

0 0.2 0.4 0.6

L
a
te

n
cy

 (
m

s)
PR-AUC

32 bit

16 bit
8 bit

4 bit

Figure 13: Exp. #9 (§8.3): Latency

vs accuracy trade-off. Reducing

the precision from 32 to 4 bits de-

creases the accuracy only slightly

while greatly improves the latency.

16 .582 2.00

8 .582 .582 1.85 1.92

4 .580 .579 .576 1.81 1.85 1.89

8 16 32 8 16 32

a. PR-AUC b. Latency (ms)

L1 Precision (bit)

L
2

P
re

ci
si

o
n

 (
b

it
)

Figure 14: Exp. #10 (§8.3): Trade-off between latency

and accuracy across various L1/L2 mixed-precision

caches. We vary the L1 precision (horizontal axis) and

L2 precision (vertical axis) and report the resulting ac-

curacy (left) and end-to-end latency (right).

is more straightforward to implement by having simpler/less code

compared to other algorithms. For this reason, we decided to port

EV-LFU to the DLRM.

Experiment #7: How much does EVCache affect the end-to-

end inference latency? At this point, in Facebook DLRM, we

implemented LRU (as a baseline) and EV-LFU (as a representative

of EVCache algorithms). We choose LRU as our baseline because

it has the fastest lookup and the most implemented policy in the

production systems. While there are more complex policies such

as CAR, LIRS, CLOCKPro, etc., but they are up to 2x slower than

LRU and have higher metadata space overhead. Here is the end-to-

end inference latency break down: initialization (20%), EV lookup

(40%), and the DNN forward propagation (40%). Figure 11 shows a

whisker plot comparing the baseline LRU vs. EV-LFU. The Python-

based EV-LFU implementation delivers lower latency.

8.3 EVMix and EVProx

Next, we evaluate EVMix and EVProx layers of EVStore.

Experiment #8: What implementation architecture best sup-

ports EVMix? Figure 12 shows various implementation efforts

we performed in re-architecting our caching layer in PyTorch and

the resulting end-to-end latency. Originally, we implemented our

caching data structure in Python. However, Python only supports

fp32 precision, thuswe adopted a C implementation to enable stor-

ing data in lower resolution (e.g., 16, 8, and 4 bits). “C-socket” refers

to the C implementation that uses sockets for DLRM data transfer,

“C-Ctypes” as the C implementation that uses Ctypes binding to

connect our C caching to DLRM, and “*-𝑁 -thd” implies the num-

ber of threads being implemented to reduce cache contention §5.2.

Based on our experiment, the “C-Ctypes-6-thd” delivers the best

performance compared to other implementation choices.

Experiment #9: What are the latency-accuracy tradeoffs in

floating point resolution (32 to 4 bits)? After we finalized

our C-Ctypes-6-thd implementation, we can now evaluate the ac-

curacy/latency tradeoffs when using lower precisions. Figure 13

shows that reducing the precision from 32 bit to 4 bit speeds up the

end-to-end latency (vertical axis) by 15% and only decreases the

“PR-AUC” (horizontal axis) only by 2%. We use “PR-AUC” (Area

0

.2

.4

.6

.8

1

0 1 2 3 4

C
D

F

4%

2%

Latency (ms)

EVMix + EVProx
EVMix + EVProx

EVMix only

Figure 15: Exp. #11 (§8.3): Tail latency improvement with

EVProx. Compared to standalone EVMix, adding L3 (EV-

Prox) layer reduces the 95𝑡ℎ and 99𝑡ℎ latency by 27% and 22%.

Under the Precision-Recall Curve) to evaluate the performance of

our classifier to counteract label imbalance such as in our Criteo

dataset, as is standard practice [27, 35]. Intuitively, PR-AUC mea-

sures the extent to which a classifier correctly identifies all positive

labels without mistaking too many others as positive.

Experiment #10: How does latency trade off against accu-

racy in mixed-precision L1+L2 caches? In this experiment, we

divide the total cache size to L1 and L2 equally (i.e., 50-50). Figure

14 shows the accuracy (the cell content of Figure 14a) and aver-

age end-to-end latency (in Figure 14b) of EVMix as we change the

embedding precision in the L1 tier (horizontal axis) and the L2 tier

(vertical axis). For example, if we move from 32-bit L1 and 16-bit L2

to a 32-bit L1 and 4-bit L2 (the top-right and bottom-right corners),

we improve the average latency from 2ms to 1.89ms and reduce

the accuracy slightly from 0.582 (best case) to 0.576. Combining

8-bit L1 and 4-bit L2 gives us the best EVMix result as marked by

the dotted rectangles where we reduced the latency by 10% with

only 0.2% loss of accuracy.

Experiment #11: Howmuch is the tail latency improvement

with L3 (EVProx)? In Figure 15, we show the latency CDF of EV-

Prox variants compared to EVMix. The “EVMix + EVProx4%” gives

the best latency CDF in which we dedicate 4% of the cache size for

L3 (EVProx) key-to-key mapping and split the rest for L1 and L2.

Compared to the pure EVMix, adding the “EVProx4%” successfully

reduces the 95𝑡ℎ and 99𝑡ℎ tail latency by 27% and 22% respectively.

This experiment is conducted on 20% cache size.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

0

0.5

1

1.5

2

0 500 1000 1500 2000 2500

L
at

en
cy

 (
m

s)

roughput (req/s)

Vanilla DLRM (baseline)

EVStore (25% Memory)

EVStore (50% Memory)

EVStore (75% Memory)

EVStore (100% Memory)

Figure 16: Exp. #12 (§8.4): EVStore enables multi-DRS de-

ployment in one node. EVStore’s scale-out deployment

quadrupled the throughput while keeping the latency low.

8.4 Putting It All Together

Experiment #12: Does packing multiple DRSs on a machine

improve throughput? As EVStore removes the memory re-

quirement, in Figure 16, we show that we can concurrently run

4 DRSs on one machine (limited by the number of 4 GPUs in

Chameleon’s gpu_v100 node) by giving 25% of the memory space

to each DRS. As a result, we quadrupled the throughput (infer-

ences/second) of the DRS. The figure also shows our final EV-

Store implementation improves the latency compared to Face-

book’s vanilla DLRM.

Experiment #13: Canwe reduce thememory footprint of the

DRS service while meeting typical SLAs? Figure 17 shows

that to meet an SLA of 2ms average inference latency, the vanilla

DLRM will require 100% of the data to be present in memory. In

contrast, EVStore’s most optimum implementation with all fea-

tures enabled (rightmost bar) needs only 6% of data to be in mem-

ory, which is a 94% reduction of memory requirement in trade

for the 0.2% accuracy drop. Finally, the middle bars show how the

range of EVStore optimizations and features demand 30% to 80%

of the data to be in memory. These results demonstrate the effec-

tiveness of EVStore in reducing the memory footprint of the DRS

service, while still meeting typical SLAs.

9 RELATED WORK

In addition to the studies surveyed throughout the paper, there are

some recent publications on optimizing DRAM cache and GPU-

resident cache utilization during DRS training [51, 56, 73, 76, 79,

80]. The focus, however, is on training rather than inference, and

ignores systems-level nuances of cache policy and optimizations.

Another nascent body of work has extensively studied improv-

ing key-value store performance by exploiting the GPU [32, 77],

NMP [17, 40, 43], SSD characteristics [15, 49], and lookup query

properties [45]. They are orthogonal to EVStore in that could help

increase the throughput of key-value store operations, which can

be beneficial for DRS that rely on these stores. For instance, NMP

can help convert the raw EV data into a Tensor format which will

reduce the CPU load. However, these techniques do not address

the specific challenges associatedwith the growth of EV table sizes,

which is the focus of EVStore. Additionally, many papers require

0

20

40

60

80

100

%
 d

a
ta

 i
n

 m
em

o
ry

Vanilla DLRM (baseline)

EVCache_Py + LRU

EVCache_Py + EVLFU

EVCache_Cpp + EV-LFU (32bit)

EVCache_Cpp + EV-LFU (16bit)

EVCache_Cpp + EVMix (8bit + 4bit)

EVStore (EVCache + EVMix + EVProx)

Figure 17: Exp. #13 (§8.4): Basic to fully optimized EV-

Store. The y-axis shows the minimum memory foot-

print to satisfy SLA target of 2ms average end-to-end infer-

ence latency. Fully optimized EVStore implementation re-

duces 94% of the memory footprint compared to Facebook’s

vanilla DLRM.

either bespoke hardware modifications or emerging memory tech-

nologies, which make them elusive for commodity hardware de-

ployments. EVStore, on the other hand, is designed to be com-

patible with commodity hardware, making it a more practical and

accessible solution for improving the performance of DRS.

10 CONCLUSION

We have introduced EVStore: a novel 3-tier EV caching layer to

address the continuous growth of EV tables in deep recommenda-

tion systems. EVStore is a practical system that brings several ad-

vantages. DRS designers no longer need to worry about the mem-

ory size limitation of their EV tables since users with low-memory

servers can still run DRSs with large EV tables. Recommenda-

tion services can also run concurrent DRSs to increase through-

put and thus potentially bolster revenue. By dislodging the mono-

lithic DRAM-hungry DRS architectures of today with a scalable

systems-oriented approach, carrying relatively modest downsides,

EVStore has the potential to curb the enormous and ballooning

operational costs and expensive resources needed to run a com-

petitive DRS across the industry.

Scientifically, we believe EVStore opens several doors for fu-

ture work, including in the realm of EV caching (are there bet-

ter policies?) and cache management (what is the best L1-L2-L3

size arrangement?). In addition, there aremany components inside

EVStore that can be further improved, such as the bit-encoding

method, the L3 remapping strategies, and the popularity rank-

ing update mechanism. It also spurs questions around the role of

emerging memory technologies and GPU-accelerated caching on

future recommendation systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their tremendous feedback

and comments. This material was supported by funding from NSF

(grant Nos. CNS-1526304, CNS-1405959, CCF-2028427, and CCF-

2119184) as well as generous donations from Seagate Technology.

The experiments in this paper were performed in Chameleon [2,

41]. Any opinions, findings, and conclusions, or recommendations

expressed herein are those of the authors and do not necessarily

reflect the views of the NSF or other institutions.

EVStore: Storage and Caching Capabilities for Scaling Embedding Tables in DRS ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

REFERENCES
[1] [n. d.]. https://github.com/ucare-uchicago/ev-store-dlrm.
[2] [n. d.]. Chameleon Cloud Testbed. https://www.chameleoncloud.org/.
[3] [n. d.]. RocksDB. http://rocksdb.org/.
[4] 2013. Download Terabyte Click Logs. https://labs.criteo.com/2013/12/

download-terabyte-click-logs/.
[5] 2014. Click-Through Rate Prediction: Predict whether a mobile ad will be

clicked. https://www.kaggle.com/c/avazu-ctr-prediction.
[6] 2014. Display Advertising Challenge. https://www.kaggle.com/c/

criteo-display-ad-challenge.
[7] 2018. Notes from the ai frontier insights from hundreds of use cases. https://

www.mckinsey.com/featured-insights/artificial-intelligence/.
[8] 2019. Use cases of recommendation systems in business current applications

and methods. https://emerj.com/ai-sector-overviews/
use-cases-recommendation-systems/.

[9] 2020. SQLite. https://www.sqlite.org/index.html.
[10] 2021. How machine learning powers Facebook’s News Feed ranking algorithm.

https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/.
[11] 2022. Benchmarks for Java In Memory Caches. https://github.com/cache2k/

cache2k-benchmark.
[12] 2022. CORTX-Motr. https://github.com/Seagate/cortx-motr.
[13] 2022. Memory Prices. https://memory.net/memory-prices/.
[14] Alaa R Alameldeen and David A Wood. 2004. Adaptive cache compression for

high-performance processors. In Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA).

[15] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A fast array of wimpy
nodes. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP).

[16] Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki
Rampersad, Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector
Yuen, Shishir Juluri, Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere,
Krishnakumar Nair, Maxim Naumov, Chris Peterson, Mikhail Smelyanskiy, and
Vijay Rao. 2021. Supporting Massive DLRM Inference Through Software
Defined Memory. https://arxiv.org/abs/2110.11489.

[17] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung Kyu Lim, and
Hyesoon Kim. 2021. Fafnir: Accelerating sparse gathering by using efficient
near-memory intelligent reduction. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA).

[18] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural
Machine Translation by Jointly Learning to Align and Translate. In Proceedings
of The 3rd International Conference on Learning Representations (ICLR).

[19] Sorav Bansal and Dharmendra S. Modha. 2004. CAR: Clock with Adaptive
Replacement. In Proceedings of The FAST ’04 Conference on File and Storage
Technologies.

[20] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving
cache hit rate by maximizing hit density. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[21] Nathan Beckmann and Daniel Sanchez. 2016. Modeling cache performance
beyond LRU. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[22] Nathan Beckmann and Daniel Sanchez. 2017. Maximizing Cache Performance
Under Uncertainty. In Proceedings of the 23rd international symposium on High
Performance Computer Architecture (HPCA-23).

[23] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of The
1st Workshop on Deep Learning for Recommender Systems (DLRS@RecSys).

[24] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In Proceedings of The 10th ACM Conference on
Recommender Systems (RecSys).

[25] Asit Dan and Don Towsley. 1990. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer systems.

[26] Per-Erik Danielsson. 1980. Euclidean distance mapping. Computer Graphics
and image processing (1980).

[27] Jesse Davis and Mark H. Goadrich. 2006. The relationship between
Precision-Recall and ROC curves. In Proceedings of the 23rd international
conference on Machine learning.

[28] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti. 2019. Bandana:
Using Non-Volatile Memory for Storing Deep Learning Models. In Proceedings
of The 2nd Conference on Machine Learning and Systems (MLSys).

[29] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza
Zadeh. 2013. WTF: the who to follow service at Twitter. In Proceedings of the
22nd international conference on World Wide Web (WWW).

[30] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon
Reagen, David Brooks, Bradford Cottel, Kim M. Hazelwood, Mark Hempstead,
Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail
Smelyanskiy, Liang Xiong, and Xuan Zhang. 2020. The Architectural
Implications of Facebook’s DNN-based Personalized Recommendation. In
Proceedings of The 26th IEEE International Symposium on High-Performance
Computer Architecture (HPCA).

[31] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro,
James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang
Xiong, and Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A
Datacenter Infrastructure Perspective. In Proceedings of The 24th IEEE
International Symposium on High-Performance Computer Architecture (HPCA).

[32] Tayler H Hetherington, Mike O’Connor, and Tor M Aamodt. 2015.
Memcachedgpu: Scaling-up scale-out key-value stores. In Proceedings of the 6th
ACM Symposium on Cloud Computing.

[33] Gisli R. Hjaltason and Hanan Samet. 2003. Properties of embedding methods
for similarity searching in metric spaces. IEEE Transactions on Pattern Analysis
and machine intelligence (2003).

[34] Seokin Hong, Bulent Abali, Alper Buyuktosunoglu, Michael B Healy, and
Prashant J Nair. 2019. Touché: Towards ideal and efficient cache compression
by mitigating tag area overheads. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture.

[35] László Jeni, Jeffrey Cohn, and Fernando De la Torre. 2013. Facing Imbalanced
Data - Recommendations for the Use of Performance Metrics. Proceedings -
2013 Humaine Association Conference on Affective Computing and Intelligent
Interaction, ACII 2013.

[36] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement. In Proceedings of The 2005 USENIX
Annual Technical Conference.

[37] S. Jiang and X. Zhang. 2002. LIRS: An efficient low inter reference recency set
replacement policy to improve buffer cache performance. In Proceedings of The
International Conference on Measurements and Modeling of Computer Systems
(SIGMETRICS).

[38] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu
Ma, et al. 2021. Ten lessons from three generations shaped Google’s TPUv4i:
Industrial product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA).

[39] Anne Kao and Steve R. Poteet. 2007. Natural language processing and text
mining.

[40] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra,
Utku Diril, Amin Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz,
Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu,
Mark Hempstead, and Xuan Zhang. 2020. Recnmp: Accelerating personalized
recommendation with near-memory processing. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA).

[41] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock,
Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe
Stubbs. 2020. Lessons Learned from the Chameleon Testbed. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC).

[42] Guy K Kloss. 2009. Automatic C library wrapping Ctypes from the trenches.
(2009).

[43] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A practical
near-memory processing architecture for embeddings and tensor operations in
deep learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture.

[44] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, and Chong-Sang Kim. 1999. On the existence of a spectrum of
policies that subsumes the least recently used (LRU) and least frequently used
(LFU) policies. In Proceedings of the 1999 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems.

[45] Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, Jae W.
Lee, and Tae Jun Ham. 2021. MERCI: efficient embedding reduction on
commodity hardware via sub-query memoization. In Proceedings of the 26th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[46] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt,
Abhijit Bose, and Alex Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale
Graph Embedding System. In Proceedings of The 2nd Conference on Machine
Learning and Systems (MLSys).

[47] Huaicheng Li, Daniel S. Berger, Stanko Novakovic, Lisa Hsu, Dan Ernst, Pantea
Zardoshti, Monish Shah, Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and
Ricardo Bianchini. 2022. First-generation Memory Disaggregation for Cloud
Platforms. https://arxiv.org/pdf/2203.00241.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada D. H. Kurniawan, R. Wang, K. S. Zulkifli, F. A. Wiranata, J. Bent, Y. Vigfusson, and H. S. Gunawi

[48] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. 2014.
Euclidean distance geometry and applications. SIAM review (2014).

[49] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. 2011.
SILT: A memory-efficient, high-performance key-value store. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP).

[50] N. Megiddo and D. S. Modha. 2003. ARC: A self-tuning, low overhead
replacement cache. In Proceedings of The FAST ’03 Conference on File and
Storage Technologies.

[51] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao,
and Bin Cui. 2021. Het: Scaling out huge embedding model training via
cache-enabled distributed framework. arXiv:2112.07221 (2021).

[52] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and
Shivaram Venkataraman. 2021. Marius: Learning Massive Graph Embeddings
on a Single Machine. In Proceedings of The 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[53] James C. Mullikin. 1992. The vector distance transform in two and three
dimensions. CVGIP: Graphical Models and Image Processing (1992).

[54] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta,
Carole-JeanWu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich,
Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu,
Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep learning
recommendation model for personalization and recommendation systems.
arXiv:1906.00091.

[55] Victor F Nicola, Asit Dan, and Daniel M Dias. 1992. Analysis of the generalized
clock buffer replacement scheme for database transaction processing. In
Proceedings of the 1992 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems.

[56] Even Oldridge, Julio Perez, Ben Frederickson, Nicolas Koumchatzky, Minseok
Lee, Zehuan Wang, Lei Wu, Fan Yu, Rick Zamora, O Yılmaz, Alec Gunny, and
Vinh Nguyen. 2020. Merlin: a gpu accelerated recommendation framework.
Proceeding s of IRS (2020).

[57] E. Theodore L. Omtzigt, Peter Gottschling, Mark Seligman, and William Zorn.
2020. Universal Numbers Library: design and implementation of a
high-performance reproducible number systems library. arXiv:2012.11011
(2020).

[58] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,
Daya Shanker Khudia, James Law, Parth Malani, Andrey Malevich, Nadathur
Satish, Juan Miguel Pino, Martin Schatz, Alexander Sidorov, Viswanath
Sivakumar, Andrew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku
Diril, Dmytro Dzhulgakov, Kim M. Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao,
Vijay Rao, Nadav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy. 2018. Deep
Learning Inference in Facebook Data Centers: Characterization, Performance
Optimizations and Hardware Implications. https://arxiv.org/abs/1811.09886.

[59] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. 2004. Similarity
between Euclidean and cosine angle distance for nearest neighbor queries. In
Proceedings of the 2004 ACM symposium on Applied computing.

[60] Liana V. Rodriguez, Farzana Beente Yusuf, Steven Lyons, Eysler Paz, Raju
Rangaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. 2021. Learning
Cache Replacement with CACHEUS. In Proceedings of The 19th USENIX
Conference on File and Storage Technologies (FAST).

[61] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and Ymir
Vigfusson. 2014. Dynamic performance profiling of cloud caches. In
Proceedings of the ACM Symposium on Cloud Computing.

[62] Amit Sharma, Jake M Hofman, and Duncan J Watts. 2015. Estimating the
causal impact of recommendation systems from observational data. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation.

[63] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh
Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett
Witchel, et al. 2020. Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[64] Dimitra Tsigkari and Thrasyvoulos Spyropoulos. 2022. An approximation
algorithm for joint caching and recommendations in cache networks. IEEE
Transactions on Network and Service Management (2022).

[65] Uresh Vahalia. 1996. Unix Internals: The New Frontiers.
[66] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Rangaswami, M.

Zhao, and G. Narasimhan. 2018. Driving Cache Replacement with ML-based
LeCaR. In Proceedings of The 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage).

[67] S Vijayarani and R Janani. 2016. Text mining: open source tokenization
tools-an analysis. Advanced Computational Intelligence: An International
Journal (ACII) (2016).

[68] Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason
Xue. 2021. FlashEmbedding: storing embedding tables in SSD for large-scale
recommender systems. In Proceedings of The 12th ACM SIGOPS Asia-Pacific
Workshop on Systems (APSys).

[69] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and
Dik Lun Lee. 2018. Billion-scale Commodity Embedding for E-commerce
Recommendation in Alibaba. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD).

[70] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross
network for ad click predictions. In Proceedings of ADKDD.

[71] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan
Hong, and Ed Chi. 2021. DCN v2: Improved deep & cross network and
practical lessons for web-scale learning to rank systems. In Proceedings of the
Web Conference 2021.

[72] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-JeanWu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data processing for solid
state drive based recommendation inference. In Proceedings of The 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[73] Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, Kai Ren, and Jiwu
Shu. 2022. Fleche: an efficient GPU embedding cache for personalized
recommendations. In Proceedings of the Seventeenth European Conference on
Computer Systems.

[74] Xing Xie, Jianxun Lian, Zheng Liu, Xiting Wang, Fangzhao Wu, Hongwei
Wang, and Zhongxia Chen. 2018. Personalized recommendation systems: Five
hot research topics you must know. https://www.microsoft.com/en-us/
research/lab/microsoft-research-asia/articles/
personalized-recommendation-systems/. Microsoft Research Lab-Asia (2018).

[75] Ming Xue and Changjun Zhu. 2009. The socket programming and software
design for communication based on client/server. In Pacific-Asia Conference on
Circuits, Communications and Systems.

[76] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and Andrew
Tulloch. 2020. Mixed-Precision Embedding Using a Cache. arXiv:2010.11305
(2020).

[77] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-kv: A case for gpus to maximize the throughput of in-memory
key-value stores. Proceedings of the VLDB Endowment (2015).

[78] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming
Sun, and Ping Li. 2020. Distributed Hierarchical GPU Parameter Server for
Massive Scale Deep Learning Ads Systems. In Proceedings of The 3rd Conference
on Machine Learning and Systems (MLSys).

[79] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming
Sun, and Ping Li. 2020. Distributed hierarchical gpu parameter server for
massive scale deep learning ads systems. Proceedings of Machine Learning and
Systems (2020).

[80] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. Aibox: Ctr prediction model training on a single node. In Proceedings of
the 28th ACM International Conference on Information and Knowledge
Management.

[81] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed H. Chi.
2019. Recommending what video to watch next: a multitask ranking system. In
Proceedings of the 13th ACM Conference on Recommender Systems (RecSys).

[82] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. DGL-KE: Training Knowledge Graph
Embeddings at Scale. In Proceedings of The 43rd International ACM SIGIR
conference on research and development in Information Retrieval (SIGIR).

[83] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through
Rate Prediction. In Proceedings of The 31st Innovative Applications of Artificial
Intelligence Conference.

[84] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma,
Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for
Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD).

Received 2022-07-07; accepted 2022-09-22

